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Efficient Analysis of Waveguide Components
Using a Hybrid PEE-FDFD Algorithm

Michal Wiktor and Michal Mrozowski, Senior Member, IEEE

Abstract—The partial eigenfunction expansion (PEE) method
combined with the classical finite difference frequency domain
(FDFD) algorithm is proposed to accelerate frequency domain
analysis of waveguide components. Examples are shown validating
the method both for eigenvalue and deterministic problems.

Index Terms—Finite difference frequency domain (FDFD),
modal expansion, waveguides.

T ECHNIQUES based on Yee’s scheme of finite differ-
ence discretization of Maxwell’s equations are among

the most efficient algorithms used nowadays in computational
electromagnetics [1], [2]. Most of the developments in this
area is concerned with the time domain techniques such as
the finite difference time domain (FDTD) scheme. While it
is quite straightforward to use Yee’s mesh in the frequency
domain [2], the finite difference frequency domain method
(FDFD) enjoys smaller popularity, perhaps because it involves
solving a large system of equations. There are, however, prob-
lems, such as filters, resonators and other high quality factor
circuits, where the FDFD seems to be more appropriate than
FDTD. Therefore, it seems worthwhile to develop methods
which would make the FDFD technique computationally more
efficient. One way toward this goal is to make the size of the
system matrix as small as possible by applying the structure
segmentation technique. Such an approach has been demon-
strated, e.g., in [5] where the FDFD method has been combined
with the mode matching technique via the generalized admit-
tance matrix concept. This matrix has to be computed for the
chosen subvolume by means of the FDFD method for each
mode used in the mode matching analysis. In this contribu-
tion we propose a different approach in which the Helmholtz
equation within entire structure is discretized by combining the
partial eigenfunction expansion technique (PEE) [4] with the
classical FDFD. As a result the matrix equation to be solved
is very small and direct solution techniques can be applied.

The PEE (or modal expansion) has originally been proposed
to accelerate the time domain analysis of waveguides [4] and
waveguide discontinuities [3], [6]. In such problems one often
deals with the situation where the computational domain con-
tains long parts of a uniform waveguide, where transverse dis-
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tribution of electromagnetic field can be evaluated analytically.
One can take advantage of this fact and apply one dimensional
discretization in those parts dividing uniform waveguide sec-
tions into slices and subsequently express the transverse field as
a series of eigenfunctions or modes associated with cross-sec-
tional geometry of the waveguide. The variables in PEE algo-
rithm are the amplitudes of modes at a given slice rather than
the values of electromagnetic field intensity at selected points
in space. Combining the PEE analysis in homogeneous parts of
the structure and FDTD in the rest of the circuit yields, as shown
in [3], [4], [6], an improvement in numerical efficiency.

Due to the iterative character of FDTD algorithm, combining
the eigenfunction expansion with the classical finite difference
scheme in time domain is simple [3], [4]. Once the space decom-
position has been carried out, different leap-frog algorithms are
used in each subspace with fields at the boundaries computed at
one time step with one algorithm serving as the boundary values
for the next iteration for the other algorithm. The frequency do-
main formulation discussed in this letter is less straightforward
as far as combining the FDFD part with the PEE part. This is
because the matrix operator has to be set up explicitly.

I. FORMULATION OF THE METHOD

For concreteness, let us consider a capacitative iris in a wave-
guide shown in Fig. 1. The structure is divided into a region
containing the iris, denoted by , and parts of a homogeneous
waveguide, denoted by and . For region we define the
classical FDFD operator [2], while the electromagnetic field in
regions and is described according to the PEE scheme
[4].

In the PEE algorithm the field in a uniform part of the struc-
ture is expressed as a superposition of modes. Hence,

(1)

where denotes the transverse distribution of the electric field
of the th mode (an eigenfuction) and is the amplitude
of this mode with respect to the direction of propagation .
Introducing the space discretization in the -direction and
denoting the propagation constant of the free space as , and
the eigenvalue of the th mode as one gets the Helmholtz
equation in the form

(2)
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Fig. 1. Analyzed structure—a waveguide with an iris inside with division into
slices and subdomains shown.

where denotes the sample of amplitude (1) of th mode at
the th slice of waveguide (Fig. 1). Introducing a vector con-
taining all coefficients

(3)

the set of linear (2) for all modes and slices can be rewritten
in a matrix form [2]

(4)

To solve (4), one should give the boundary conditions: the
amplitudes at the excitation plane and the amplitudes at
the end of for all in (1). Vectors containing appropriate
values can be defined as

and (5)

(6)

In , the classical finite difference operator, denoted as , is
defined [2]. The argument of , denoted as , can be written as

where (7)

(8)

assuming nodes in the crossection and in the direction
of propagation. The , , superscripts denote the component
of the vector of electric field sampled in selected node of the
mesh, in (7) are vectors containing all field samples at the th
slice of . The equation to be solved in region is

(9)

subject to the boundary condition at the interface with

(10)

The boundary condition at the interface between and
can be defined in similar way.

A. Assembling the Common Operator

The important fact is that the zero slice of is the same as
slice of ,and similarly, the first slice of is the boundary

of . To assemble the common the boundary conditions for
and should be expressed in terms of the quantities of a

neighboring region: vector should be expressed by and
vector by . According to (1) the following expression is
satisfied:

(11)

for the region (1), where is a discretized pattern
of the th mode. Due to orthogonality of modes in the wave-
guide and the properties of inner product, the coefficients of

vector can be expressed as

(12)

where denotes the transposition and is the standard inner
product. Assembling (column-wise) vectors multiplied by

into matrix the common operator for all structure
and its argument can be written as follows:

. . .
...
...

. . .

. . .
...
...

. . .

...

...

(13)

B. Termination of the Computational Space

In order to terminate the computational space, the classical
FD algorithm assumes a single mode propagation [7] so the
analyzed structure has to be long enough to attenuate all higher
order modes excited at the discontinuity. In the PEE-FDFD
method every mode is terminated independently by simply
putting

(14)

for all . A similar set of conditions can be
written for the last slice in region . The implementation of
boundary condition resembles the modal techniques used in [9],
[10]. However differencies between PEE-FDFD and the other
techniques show where multiple doscontinuities are present. In
this case the modal expansion is used at multiple slices.

II. NUMERICAL RESULTS

As a first example of the hybrid method PEE-FDFD we
show the results of computations of the reflection coefficient
for the fundamental mode in a waveguide containing an
iris (Fig. 2). The structure is uniform in the direction, so a
2-D formulation was used. The waveguide was discretized into
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Fig. 2. Structures analyzed as examples, the waveguide with the iris (to the
left) and the resonator with the wedge (to the right).

TABLE I
MAXIMUM ERROR OF COMPUTATION OF js j IN WAVEGUIDE WITH IRIS

20 cells in the direction, the number of slices in direction
varied depending on the method. The dicretization step was

mm and the normalized frequency range
was (1.05 – 1.95), where is the cutoff frequency of the

mode. Note, that since there is only one discontinuity,
all modes can be terminated close to the iris using (14), and
hence the lengths of the PEE regions reduce to just one slice
on each side. The length of the FDFD region varied. Table I
compares of the number of unknowns, the solution time and
the accuracy of the hybrid approach with respect the classical
FDFD technique with a single mode termination. As one
can see, for our problem we achieved a speedup of 14 with
practically the same accuracy.

If the structure contains other discontinuities or reflecting
planes then the length of the PEE region has to be larger
than one slice. However, since the higher order modes are
attenuated, the number of eigenfunctions in the PEE region
can be made small. To illustrate this we have computed the
resonant frequency of the first mode in a resonator structure
shown in Fig. 2. For this mode the metal septum introduces
field singularities and this causes significant errors in the finite
difference analysis [8]. To achieve good accuracy the structure
was finely meshed into 96 slices in the direction and 80 cells
in the direction ( mm). The length of the
FDFD region and the number of eigenfunctions in the PEE
region were varied. As the distance from the FDFD region

TABLE II
RELATIVE ERROR FOR THE FIRST MODE IN A RESONATOR WITH IRIS

increased the number of modes was being gradually reduced
to reach the minimum of just three modes at the slices next
to the side walls. Table II shows the numerical data. Again,
the errors and the solution time are referred to the FDFD
calculations ( GHz). It is seen that very good
results are obtained with the hybrid method much faster than
with the classical FDFD method.

III. CONCLUSIONS

A frequency version of a hybrid method combining the PEE
with the classical FDFD was introduced. Unlike other hybrid
techniques that use modal expansion [9], [10], the proposed al-
gorithm can be used both for termination of computational do-
main, and to accelerate computations in long parts of uniform
guides between discontinuities.
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