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Efficient Analysis of Waveguide Components
Using a Hybrid PEE-FDFD Algorithm

Micha Wiktor and Michal Mrozowski, Senior Member, |EEE

Abstract—The partial eigenfunction expansion (PEE) method
combined with the classical finite difference frequency domain
(FDFD) algorithm is proposed to accelerate frequency domain
analysis of waveguide components. Examplesare shown validating
the method both for eigenvalue and deter ministic problems.

Index Terms—Finite difference frequency domain (FDFD),
modal expansion, waveguides.

ECHNIQUES based on Yee's scheme of finite differ-
ence discretization of Maxwell’s equations are among

the most efficient algorithms used nowadays in computational
electromagnetics [1], [2]. Most of the developments in this
area is concerned with the time domain techniques such as
the finite difference time domain (FDTD) scheme. While it
is quite straightforward to use Yee's mesh in the frequency
domain [2], the finite difference frequency domain method
(FDFD) enjoys smaller popularity, perhaps because it involves
solving alarge system of equations. There are, however, prob-
lems, such as filters, resonators and other high quality factor
circuits, where the FDFD seems to be more appropriate than
FDTD. Therefore, it seems worthwhile to develop methods
which would make the FDFD technique computationally more
efficient. One way toward this goal is to make the size of the
system matrix as small as possible by applying the structure
segmentation technique. Such an approach has been demon-
strated, e.g., in [5] where the FDFD method has been combined
with the mode matching technique via the generalized admit-
tance matrix concept. This matrix has to be computed for the
chosen subvolume by means of the FDFD method for each
mode used in the mode matching analysis. In this contribu-
tion we propose a different approach in which the Helmholtz
equation within entire structure is discretized by combining the
partial eigenfunction expansion technique (PEE) [4] with the
classical FDFD. As a result the matrix equation to be solved
is very small and direct solution techniques can be applied.
The PEE (or modal expansion) has originally been proposed
to accelerate the time domain analysis of waveguides [4] and
waveguide discontinuities [3], [6]. In such problems one often
deals with the situation where the computational domain con-
tains long parts of a uniform waveguide, where transverse dis-
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tribution of electromagnetic field can be evaluated analytically.
One can take advantage of this fact and apply one dimensional
discretization in those parts dividing uniform waveguide sec-
tionsinto slices and subsequently expressthe transversefield as
a series of eigenfunctions or modes associated with cross-sec-
tional geometry of the waveguide. The variables in PEE ago-
rithm are the amplitudes of modes at a given dlice rather than
the values of electromagnetic field intensity at selected points
in space. Combining the PEE analysisin homogeneous parts of
the structureand FDTD intherest of the circuit yields, as shown
in[3], [4], [6], an improvement in numerical efficiency.

Dueto theiterative character of FDTD algorithm, combining
the eigenfunction expansion with the classical finite difference
schemeintimedomainissimple[3], [4]. Oncethe space decom-
position has been carried out, different leap-frog algorithms are
used in each subspace with fiel ds at the boundaries computed at
onetime step with one algorithm serving asthe boundary values
for the next iteration for the other algorithm. The frequency do-
main formulation discussed in this letter is less straightforward
as far as combining the FDFD part with the PEE part. Thisis
because the matrix operator has to be set up explicitly.

|. FORMULATION OF THE METHOD

For concreteness, let us consider a capacitativeirisin awave-
guide shown in Fig. 1. The structure is divided into a region
containing theiris, denoted by §2,, and parts of a homogeneous
waveguide, denoted by 2; and £23. For region €2, we definethe
classical FDFD operator [2], while the electromagnetic field in
regions 2; and 23 is described according to the PEE scheme
[4].

In the PEE agorithm the field in a uniform part of the struc-
tureis expressed as a superposition of modes. Hence,

r

E(w,y,z) :Zap(z)é},(a:,y) (1)

p=1

where ¢, denotes the transverse distribution of the electric field
of the pth mode (an eigenfuction) and a,(z) is the amplitude
of this mode with respect to the direction of propagation .
Introducing the space discretization Az in the z-direction and
denoting the propagation constant of the free space as kg, and
the eigenvalue of the pth mode as k,, one gets the Helmholtz
equation in the form

n—1 _ n n+1
a, 2ap +a,
Az

— (kg —k2)ap =0 )
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Fig. 1. Anayzed structure—awaveguide with anirisinside with division into
slices and subdomains shown.

where a;; denotes the sample of amplitude (1) of pth mode at
the nth dlice of waveguide (Fig. 1). Introducing a vector a con-
taining al a;; coefficients

a: [a/i---a})a%---a%---a{\4---ay] o [al-

..aM] ©)
the set of linear (2) for al P modesand NV slicescan berewritten
in a matrix form [2]

Ga=0. 4)

To solve (4), one should give the boundary conditions: the a]?,
amplitudes at the excitation plane and the o, +' amplitudes at
the end of 4 for al p in (1). Vectors containing appropriate
values can be defined as

a® = [a? e a?)] and (5)
aMAL — [aiw'H ”.all\)4+1] . ©)

In 2, the classical finite difference operator, denoted as L, is
defined [2]. The argument of L, denoted as v, can be written as

v:[vlv2...vk ...U]V]

where (7

k _ x Y Y z
v = |:Cl,1,k Crk " Gk CI,J,k:| 8

assuming / x J nodesin the crossection and NV in the direction
of propagation. The x, y, » superscripts denote the component
of the vector of electric field sampled in selected node of the
mesh, v’ in (7) are vectors containing all field samples at the sth
slice of €25. The equation to be solved in region 2, is

Lv=0 9
subject to the boundary condition at the interface with €4
v = [Cf,l,o C{,Lo Cil,o T C;,J,O] . (10)

The boundary condition v™! at the interface between €2, and
€23 can be defined in similar way.

A. Assembling the Common Operator

The important fact is that the zero slice of 25 isthe same as
M dliceof €2,and similarly, thefirst slice of €25 isthe boundary
of ;. To assemble the common the boundary conditions for
L and G should be expressed in terms of the quantities of a
neighboring region: vector &™ 1! should be expressed by »* and
vector v° by @™ . According to (1) the following expression is
satisfied:

K
v’ = Z a;,wep (1)
p=1
for the 2, region (1), where e, is adiscretized pattern &,(z, i)
of the pth mode. Due to orthogonality of modes in the wave-

guide and the properties of inner product, the coefficients of
™1 vector can be expressed as

(12)

where ¢ denotes the transposition and - is the standard inner
product. Assembling (column-wise) e, vectors multiplied by
kg — k2 into matrix A the common operator for all structure
and its argument can be written as follows:

a]\472
al\/l—l

At aM

(13)

B. Termination of the Computational Space

In order to terminate the computational space, the classical
FD algorithm assumes a single mode propagation [7] so the
analyzed structure has to be long enough to attenuate all higher
order modes excited at the discontinuity. In the PEE-FDFD
method every mode is terminated independently by simply
putting

ap = a) - exp(—jfplAz)  PBp=/kE — k2 (14)
fordl ¢ = (1,2,...P). A similar set of conditions can be
written for the last dice in region Q3. The implementation of
boundary condition resemblesthe modal techniquesusedin[9],
[10]. However differencies between PEE-FDFD and the other
technigues show where multiple doscontinuities are present. In
this case the modal expansion isused at multiple slices.

II. NUMERICAL RESULTS

As a first example of the hybrid method PEE-FDFD we
show the results of computations of the reflection coefficient
for the fundamental mode 7'F'1 in a waveguide containing an
iris (Fig. 2). The structure is uniform in the y direction, so a
2-D formulation was used. The waveguide was discretized into
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Fig. 2. Structures analyzed as examples, the waveguide with the iris (to the
left) and the resonator with the wedge (to the right).

TABLE |
MAXIMUM ERROR OF COMPUTATION OF |511| IN WAVEGUIDE WITH IRIS

FDFD Hybrid Hybrid

acceleration 1 11 14
max. error [%] 0 1.72e-3 | 3.7e-3

no. of unknowns 1301 75 45

modes ‘in PEE no PEE 15 19

region
structure length 71 5 3

20 cells in the z direction, the number of slicesin z direction
varied depending on the method. The dicretization step was
Az = Az =1 mm and the normalized frequency range f/ fo
was (1.05 — 1.95), where f; is the cutoff frequency of the
T E;o mode. Note, that since there is only one discontinuity,
all modes can be terminated close to the iris using (14), and
hence the lengths of the PEE regions reduce to just one dice
on each side. The length of the FDFD region varied. Table |
compares of the number of unknowns, the solution time and
the accuracy of the hybrid approach with respect the classical
FDFD technique with a single mode termination. As one
can see, for our problem we achieved a speedup of 14 with
practically the same accuracy.

If the structure contains other discontinuities or reflecting
planes then the length of the PEE region has to be larger
than one dlice. However, since the higher order modes are
attenuated, the number of eigenfunctions in the PEE region
can be made small. To illustrate this we have computed the
resonant frequency of the first mode in a resonator structure
shown in Fig. 2. For this mode the metal septum introduces
field singularities and this causes significant errors in the finite
difference analysis [8]. To achieve good accuracy the structure
was finely meshed into 96 dlices in the z direction and 80 cells
in the z direction (Axz = Az =1/16 mm). The length of the
FDFD region and the number of eigenfunctions in the PEE
region were varied. As the distance from the FDFD region

TABLE I
RELATIVE ERROR FOR THE FIRST MODE IN A RESONATOR WITH IRIS
FDFD Hybrid | Hybrid | Hybrid
acceleration 1 3.9 6.4 8.5
rel. error [%) 0 0.06 0.23 0.52
no. of unknowns 22625 4601 2769 2008
max. no. of
modes in PEE No PEE 10 15 20
No. of slices in
FDFD region 96 15 7 3
No. of slices in
PEE region 0 81 89 93

increased the number of modes was being gradually reduced
to reach the minimum of just three modes at the dices next
to the side walls. Table Il shows the numerical data. Again,
the errors and the solution time are referred to the FDFD
calculations (fres = 19.57 GH2z). It is seen that very good
results are obtained with the hybrid method much faster than
with the classical FDFD method.

I11. CONCLUSIONS

A frequency version of a hybrid method combining the PEE
with the classica FDFD was introduced. Unlike other hybrid
techniques that use modal expansion [9], [10], the proposed al-
gorithm can be used both for termination of computational do-
main, and to accelerate computations in long parts of uniform
guides between discontinuities.
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